éMM&SuM

)49._,.@[5 Ls,ws).».efo OJS.W.:‘Q
Haykin : s
oo‘J.J.c > u“‘ﬁ9
http://webpages.iust.ac.ir/halizadeh/

2y g Joe ipgd oo

HA-ANN, CE Dept, IUST

Perceptron - history

43: McCulloch/Pitts: propose artificial neurons
49: Hebb paradigm proposed
58: Rosenblatt-perceptron (First practical application of ANN)

fixed preprocessing with masks, learning algorithm, used for
picture recognition

60: Widrow/Hoff: ADALINE (ADAptive Linear Neuron)
 Rosenblatt and Hoff proposed multilayer perceptron
— But, not able to modify learning algorithms to train it

69: Minsky/Papert: show the restrictions of the Rosenblatt-
perceptron with respect to its representational abilities

86. Rumelhart/McClelland
o Train multilayer perceptron successfully!

HA-ANN, CE Dept, IUST

Adaline

« ADALINE is an acronym for ADAptive LINear
Element (or ADAptive LInear NEuron) developed by
Bernard Widrow and Marcian Hoff (1960).

o Variation on the Perceptron Network
— The output y Is a linear combination o X
— Inputs are +1 or -1, outputs are +1 or -1

— uses a bias input

HA-ANN, CE Dept, IUST

Adaline

Differences:

— Weights update Is a function of output error

— trained using the Delta Rule

e also called: Gradient Descent method, Steepest Descent Method ,

LMS rule (least mean square), Adaline rule, Widrow-Hoff rule (the
inventors)

— The step function in the perceptron can be replaced with
a continuous (differentiable) function f, e.g. the simplest
IS linear function

— In the case of a hard limiter as the activation function, it Is

not used during training (i.e. The Delta Rule applies to a
Perceptron without a threshold).

HA-ANN, CE Dept, IUST 4

Adaline

- With or without the threshold, the Adaline is trained based
on the output of the function 7 rather than the final output.

Teacher Ot

A ¥

| 3
— Teacher

=rror ‘

Ermr

Perceptron learning

HA-ANN, CE Dept, IUST

(n]§

<IN N

S

-] —

Af)f(X)

<

-

Delta Rule

Learning algorithm

- The idea: try to minimize the network error (which is a
function of the weights)

- So we have to:
- Define an error measure

- Determine the gradient of error w.r.t. changes in weights
- Define a rule for weight update

E(W(n) =3€°(n)| [e(n) =d(m) = > x, (w, (0

 We can find the minimum of the error function E by means

of the Steepest descent method
HA-ANN, CE Dept, IUST 6

Gradient Descent Method

 start with an arbitrary point
« find a direction in which E is decreasing most rapidly

— (gradient of E(w)) = - E(W):_EE""’ GE]
Wi OWm

« make a small step in that direction

w(n+1) =w(n) -7(L E(n))

HA-ANN, CE Dept, IUST 7

Gradient Descent Algorithm

o Approximation of gradient(E)

E(w(n) =2€(n) () =d(n) - Y x,(w, (0

OE(W(M)) _ oy O8N _ e T
() = &(n) () =e(n)[-x(n)]

 Update rule for the weights becomes:

w(n +1) = w(n) +7x(n)en)

HA-ANN, CE Dept, IUST

Gradient Descent

e Gradient direction is the direction of uphill
for example, in the Figure, at position 0.3, the
gradient is uphill (F is Error, consider 1-dim case)

1

0.9 r

0.8

0.y r F

06 - Gradient
081 directio

T F'(0.3)

0.2k

0.1

T oE ©0E 04 oz 0 02 04 06 0% 1
HA-ANN, CE Dept, IUST 9

Gradient Descent

e In gradient descent algorithm, we have

w(t+1) = w(t) —n DEw()

therefore the ball goes downhill since —OE(w(t))
is downhill direction

1

0.9

0.8

0.7

0B

0.5+

0.4

0.3

0.2 r

0.1

o

w(t

-1

1 1 1 1 L 1 1 1 1
-0.8 -0.65 -0.4 -0.2 o 0.2 0.4 0.6 0.5 1

HA-ANN, CE Dept, IUST

10

Gradient Descent

e In the next step the ball goes again
downhill since —OE(w(t)) is downhill direction

1

0.9
0.5
0.7
0.5
0.5
0.4
0.3
0.2

w(t+1)

0.1

D 1 1 1 1 L 1 1 1 1
-1 -0.8 -0.5 -0.4 -0.22 O oz 0.4 OB 0.5 1

HA-ANN, CE Dept, IUST

Gradient Descent

e Gradually the ball will stop at a local minima where

the gradient is zero

1

0.9
0.3 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3
0.2 F

o1 w(t+K)

]

1 1 1 1 1 1 1 1
-1 -0.58 -0.5 -0.4 -0.2 O o2 0.4 0.5

HA-ANN, CE Dept, IUST

1
0.a

12

Learning Algorithm

Step 0: Initialize the weights to small random values and
select a learning rate, 1

Step 1: for each input vector s, with target output, t set the
Inputs to s

Ste
Ste
Ste

0 2. compute the neuron inputs
0 3. use the delta rule to update the bias and weights

0 4. stop if the largest weight change across all the

training samples is less than a specified tolerance,
otherwise cycle through the training set again

Neuron input

Deltarule

y=b+3 xw b(new) =Db(old) +n(d-vy)

w;(new) = w;(old) +n(d - y)x;
HA-ANN, CE Dept, IUST 13

Running Adaline

* One unique feature of ADALINE is that its
activation function is different for training and
running

 When running ADALINE use the following:
— Initialize the weights to those found during training
— compute the net input
— apply the activation function

Neuron input Activation Function
y=b+ xw, _flify>=0
Y=1-1ify<o

HA-ANN, CE Dept, IUST 14

Example — AND function

e Construct an AND function for a ADALINE

neuron
—leta=0.1 :
X1 x2 bias | Target)
1 1 1 1 -
L-1 : -1 Initial Conditions: Set the weightsto
-1 1 1 -1 small random values:
-1 -1 1 = L !

Xl)

HA-ANN, CE Dept, IUST =

15

First Training Run
* Apply the input (1,1) with output 1

Thenet input Is:
y=01+02*1+0.3*1=0.6

1 Thenew weights are: The lar gest
b=0.1+0.1(1-0.6) =0.14 weight
E— — 1 w, =0.2+ 0.1(1-0.6)1 = 0.24 _Change
w,=0.3+0.1(1-0.6)1=0.34 1s0.04
1
Deltarule
Neuron input = _
P b(new) =Db(old) +n(d-y)

w;(new) = w;(old) +n(d - y)x;
HA-ANN, CE Dept, IUST 16

Second Training Run

e Apply the second training set (1 -1) with
output -1

Thenet input Is:

y=0.14 + 0.24*1 + 0.34*(-1) = 0.04
Thenew weights are:

Thelargest
b=0.14 + 0.1(-1-0.04) = 0.04 weight

w, =024+ 0.1(-1-0.04)1=0.14 change
W, = 0.34 + 0.1(-1-0.04)(-1) = 0.44 is0.1

Neuron input Deltarule
y=b+ xw b(new) =b(old)+n(d-y)

HA-ANN, CE Dept, lusT Wi(N&w) = w;(old) +n(d - y)x;,;

Third Training Run

* Apply the third training set (-1 1) with
output -1

Thenet input Is:
y=0.04+0.14*(-1) + 0.44*1=0.34

- Thenew weights are: Thelargest

b=0.04+0.1(-1-0.34) =-0.09 weight
w, = 0.14 + 0.1(1+0.34)1 = 0.27 change
w, = 0.44 + 0.1(-1-0.34)1 = 0.31 's0.13

Neuron input Deltarule
y=b+ xw b(new) =b(old)+n(d-y)

HA-ANN, CE Dept, lusT WilN&w) = w;(old) +n(d - y)x; ;g

Fourth Training Run

* Apply the fourth training set (-1 -1) with
output -1

Thenet input Is:

y=-0.09-0.27*1-0.31*1=-0.67

Thenew weights are: Thelargest

b =-0.09 + 0.1(-1-0.67) = -0.27 weight
w, = 0.27 + 0.1(-1-0.67)(-1) = 0.43 change
w, = 0.31 + 0.1(-1-0.67)(-1) = 0.47 's0.16

Neuron input Deltarule
y=b+ xw b(new) =b(old)+n(d-y)

HA-ANN, CE Dept, lusT WilN&w) = w;(old) +n(d - y)x; ;g

Result

e Continue to cycle through the four training
iInputs until the largest change in the
welights over a complete cycle Is less than
some small number (say 0.01)

e |n this case, the solution becomes
—b=-05
-w; =0.5
-w, =0.5

HA-ANN, CE Dept, IUST 20

Gradient Descent

-converge to the minimum error point
-Independently of Linearly/Nonlinearly separable problems

There can be problems with Gradient Descent

a) Convergence to alocal minimum can be slow (e.g. 1000s
of steps).

b) If there are many local minima on the error surface, then
there Is no guarantee that the global minimum is found.

HA-ANN, CE Dept, IUST 21

Gradient Descent

e Problem of local minima

Error

i L.

Local minimum

minimum GIobaIT

minimum

HA-ANN, CE Dept, IUST 22

The Learning Rate, n

 The performance of an ADALINE neuron depends
heavily on the choice of the learning rate
— If it is too large the system will not converge
— 1If it is too small the convergence will take to long

o Typically, n is selected by trial and error
— typical range: 0.01 <n<10.0
— often start at 0.1

— sometimes it Is suggested that:
0.1 <n*n < 1.0 (where nisthe number of inputs)

— Sometimes it is a fixed value, or a decreasing parameter:

_ 7
0=
HA-ANN, CE Dept, IUST A 23

Madaline

Several Adaline in parallel give a Madaline

HA-ANN, CE Dept, IUST

Threshold =
NO on neurons

24

Separable regions:

Madaline

HA-ANN, CE Dept, IUST

25

Other points

-Choice of activation function —

-Step function (Hard limiter)

-Piecewise linear /
/

-Sigmoid (logistic)

1 .
p(V,) =—— with a>0
1+€)
V. = W.. V. —= e J
: iZlel -10 -8 6 4 -2|1 2 4 6 8 10
HA-ANN, CE Dept, IUST 26

Increasing a

Other functions

: MATLAB
Name Input/Output Relation Icon s
P P Function
o g=l n=l :
Hard Limat _[hardlim
a=1 nz20
- Sl g =<l p<l :
Symmetrical Hard Limit :F hardlims
a=+1 n20
Linear a4 =a 74 purelin
g =1l ngl
Saturating Linear a=n 0<n<l L satlin
a=1 nsl
' . a=-1 n<-1
Symmetric Saturating : ;
¥ S a=n -1<n<l 7£ satlins
a=1 n>1
: : 1 r
Log-Sigmoid @ = o L - logsig
te
Hyperbolic Tangent P ,
L . a="° £ tansig
Sigmoid o g
a=10 n<l
Positive Linear oslin
“ g=n HEn ‘Z P
Pt a = 1 neuron with max n C A
P Sq = 0 all other neurons p2

HA-ANN, CE Dept, |U

