
������ ���� 	
� ���

��������
���� �������

����� ��� � ��� �������

� � :Haykin

"����� :���#��� $�%& "����� :���#��� $�%&
http://webpages.iust.ac.ir/halizadeh/

"'()�� :���*���+ ,��2

1HA-ANN, CE Dept, IUST

Perceptron - history

43: McCulloch/Pitts: propose artificial neurons
49: Hebb paradigm proposed49: Hebb paradigm proposed
58: Rosenblatt-perceptron (First practical application of ANN)

fixed preprocessing with masks, learning algorithm, used for
picture recognition

60: Widrow/Hoff: ADALINE (ADAptive Linear Neuron)
• Rosenblatt and Hoff proposed multilayer perceptron

– But, not able to modify learning algorithms to train it
69: Minsky/Papert: show the restrictions of the Rosenblatt-69: Minsky/Papert: show the restrictions of the Rosenblatt-

perceptron with respect to its representational abilities
86: Rumelhart/McClelland

• Train multilayer perceptron successfully!

2HA-ANN, CE Dept, IUST

Adaline
• ADALINE is an acronym for ADAptive LINear

Element (or ADAptive LInear NEuron) developed by

Bernard Widrow and Marcian Hoff (1960).Bernard Widrow and Marcian Hoff (1960).

• Variation on the Perceptron Network
– The output y is a linear combination o x
– inputs are +1 or -1, outputs are +1 or -1
– uses a bias input

3HA-ANN, CE Dept, IUST

Adaline
Differences:

– Weights update is a function of output error
– trained using the Delta Rule– trained using the Delta Rule

• also called: Gradient Descent method, Steepest Descent Method ,
LMS rule (least mean square), Adaline rule, Widrow-Hoff rule (the
inventors)

– The step function in the perceptron can be replaced with
a continuous (differentiable) function f, e.g. the simplest
is linear function

– In the case of a hard limiter as the activation function, it is – In the case of a hard limiter as the activation function, it is
not used during training (i.e. The Delta Rule applies to a
Perceptron without a threshold).

4HA-ANN, CE Dept, IUST

- With or without the threshold, the Adaline is trained based
on the output of the function f rather than the final output.

Adaline

f (x)

Perceptron learning Delta Rule

5HA-ANN, CE Dept, IUST

Learning algorithm

- The idea: try to minimize the network error (which is a
function of the weights)

- So we have to:
- Define an error measure
- Determine the gradient of error w.r.t. changes in weights
- Define a rule for weight update

)n(e)w(n)(21=E ∑−=
m

)(n(n)wx)n(d)n(e

• We can find the minimum of the error function E by means
of the Steepest descent method

)n(e)w(n)(2
2

1=E ∑
=

−=
0j

jj)(n(n)wx)n(d)n(e

6HA-ANN, CE Dept, IUST

Gradient Descent Method

• start with an arbitrary point

• find a direction in which E is decreasing most rapidly• find a direction in which E is decreasing most rapidly

[]
mw

E

w

EEE
∂
∂

∂
∂−=−∇=− ,,)w())w(of(gradient

1
K

))E(n ()w(n)1n(w ∇−=+ η

• make a small step in that direction

7HA-ANN, CE Dept, IUST

Gradient Descent Algorithm

• Approximation of gradient(E)

• Update rule for the weights becomes:

]x(n)e(n)[
w(n)

e(n)
e(n)

w(n)

)w(n)(T−=
∂
∂=

∂
∂E

)n(e)w(n)(2
2

1=E ∑
=

−=
m

0j
jj)(n(n)wx)n(d)n(e

• Update rule for the weights becomes:

x(n)e(n) w(n)1)w(n η+=+
8HA-ANN, CE Dept, IUST

• Gradient direction is the direction of uphill
for example, in the Figure, at position 0.3, the
gradient is uphill (F is Error, consider 1-dim case)

Gradient Descent

gradient is uphill (F is Error, consider 1-dim case)

Gradient
direction

F

direction

F’(0.3)

9HA-ANN, CE Dept, IUST

• In gradient descent algorithm, we have

w(t+1) = w(t) –η ∇E(w(t))

therefore the ball goes downhill since –∇E(w(t))

Gradient Descent

is downhill direction

w(t)

10HA-ANN, CE Dept, IUST

Gradient Descent

• In the next step the ball goes again

downhill since –∇E(w(t)) is downhill direction

w(t+1)

11HA-ANN, CE Dept, IUST

• Gradually the ball will stop at a local minima where
the gradient is zero

Gradient Descent

w(t+k)

12HA-ANN, CE Dept, IUST

Learning Algorithm
• Step 0 : initialize the weights to small random values and

select a learning rate, η
• Step 1 : for each input vector s, with target output, t set the • Step 1 : for each input vector s, with target output, t set the

inputs to s
• Step 2 : compute the neuron inputs
• Step 3 : use the delta rule to update the bias and weights
• Step 4 : stop if the largest weight change across all the

training samples is less than a specified tolerance,
otherwise cycle through the training set again

y = b + xiwiΣΣΣΣ
Neuron input Delta rule

b(new) = b(old) + η(d - y)
wi(new) = wi(old) + η(d - y)xi

13HA-ANN, CE Dept, IUST

Running Adaline
• One unique feature of ADALINE is that its

activation function is different for training and
running

• When running ADALINE use the following:
– initialize the weights to those found during training
– compute the net input

– apply the activation function

Activation Function

y =
1 if y >= 0

-1 if y < 0 {y = b + xiwi

Neuron input

14HA-ANN, CE Dept, IUST

Example – AND function

• Construct an AND function for a ADALINE
neuronneuron
– let α = 0.1

x1 x2 bias Target
1 1 1 1
1 -1 1 -1

0w1

w2

ΣΣΣΣx1

x2

1

b

Initial Conditions: Set the weights to
1 -1 1 -1
-1 1 1 -1
-1 -1 1 -1

Initial Conditions: Set the weights to
small random values:

00.2

0.3

ΣΣΣΣx1

x2

1

0.1

15HA-ANN, CE Dept, IUST

First Training Run

• Apply the input (1,1) with output 1

00.2 ΣΣΣΣ1

1

0.1

1

The net input is:

y = 0.1 + 0.2*1 + 0.3*1 = 0.6

The new weights are:
b = 0.1 + 0.1(1-0.6) = 0.14
w1 = 0.2 + 0.1(1-0.6)1 = 0.24

The largest
weight
change0

0.3

ΣΣΣΣ1

1

w1 = 0.2 + 0.1(1-0.6)1 = 0.24
w2 = 0.3 + 0.1(1-0.6)1 = 0.34 is 0.04

y = b + xiwi

Neuron input

Delta rule

b(new) = b(old) + η(d - y)
wi(new) = wi(old) + η(d - y)xi

16HA-ANN, CE Dept, IUST

Second Training Run

• Apply the second training set (1 -1) with
output -1output -1

1

The net input is:

y = 0.14 + 0.24*1 + 0.34*(-1) = 0.04
The new weights are:

b = 0.14 + 0.1(-1-0.04) = 0.04
The largest
weight

00.24

0.34

ΣΣΣΣ1

-1

1

0.14

-1

b = 0.14 + 0.1(-1-0.04) = 0.04
w1 = 0.24 + 0.1(-1-0.04)1 = 0.14
w2 = 0.34 + 0.1(-1-0.04)(-1) = 0.44

weight
change
is 0.1

17HA-ANN, CE Dept, IUST

Delta rule

b(new) = b(old) + η(d - y)
wi(new) = wi(old) + η(d - y)xi

y = b + xiwi

Neuron input

Third Training Run

• Apply the third training set (-1 1) with
output -1output -1

1

0.04

The net input is:

y = 0.04 + 0.14*(-1) + 0.44*1 = 0.34
The new weights are:

b = 0.04 + 0.1(-1-0.34) = -0.09
The largest
weight

00.14

0.44

ΣΣΣΣ-1

1

0.04

-1

b = 0.04 + 0.1(-1-0.34) = -0.09
w1 = 0.14 + 0.1(1+0.34)1 = 0.27
w2 = 0.44 + 0.1(-1-0.34)1 = 0.31

weight
change
is 0.13

18HA-ANN, CE Dept, IUST

Delta rule

b(new) = b(old) + η(d - y)
wi(new) = wi(old) + η(d - y)xi

y = b + xiwi

Neuron input

Fourth Training Run

• Apply the fourth training set (-1 -1) with
output -1output -1

The net input is:

y = -0.09 - 0.27*1 - 0.31*1 = -0.67
The new weights are:

b = -0.09 + 0.1(-1-0.67) = -0.27
The largest
weight

00.27

0.31

ΣΣΣΣ-1

-1

1

-0.09

-1

b = -0.09 + 0.1(-1-0.67) = -0.27
w1 = 0.27 + 0.1(-1-0.67)(-1) = 0.43
w2 = 0.31 + 0.1(-1-0.67)(-1) = 0.47

weight
change
is 0.16

19HA-ANN, CE Dept, IUST

Delta rule

b(new) = b(old) + η(d - y)
wi(new) = wi(old) + η(d - y)xi

y = b + xiwi

Neuron input

Result

• Continue to cycle through the four training
inputs until the largest change in the inputs until the largest change in the
weights over a complete cycle is less than
some small number (say 0.01)

• In this case, the solution becomes
– b = -0.5– b = -0.5
– w1 = 0.5
– w2 = 0.5

20HA-ANN, CE Dept, IUST

-converge to the minimum error point
-independently of Linearly/Nonlinearly separable problems

Gradient Descent

There can be problems with Gradient Descent

a) Convergence to a local minimum can be slow (e.g. 1000s
of steps).

b) If there are many local minima on the error surface, thenb) If there are many local minima on the error surface, then
there is no guarantee that the global minimum is found.

21HA-ANN, CE Dept, IUST

• Problem of local minima

Gradient Descent

Local

W

Error

Local
minimum

Global
minimum

Local
minimum

22HA-ANN, CE Dept, IUST

The Learning Rate, η

• The performance of an ADALINE neuron depends
heavily on the choice of the learning rateheavily on the choice of the learning rate
– if it is too large the system will not converge
– if it is too small the convergence will take to long

• Typically, η is selected by trial and error
– typical range: 0.01 < η < 10.0
– often start at 0.1– often start at 0.1
– sometimes it is suggested that:

0.1 < n*η < 1.0 (where n is the number of inputs)

– Sometimes it is a fixed value, or a decreasing parameter:

n
t

t
+

=
1

)(0ηη
23HA-ANN, CE Dept, IUST

Madaline

Several Adaline in parallel give a Madaline

Σ

x1

x2

x3

xn .
.

W=1

Σ

x1

x2

x3

xn

xn AND.
.
.

W=1

Threshold =
No on neurons

24HA-ANN, CE Dept, IUST

Madaline

Separable regions:

25HA-ANN, CE Dept, IUST

Other points

-Choice of activation function

-Step function (Hard limiter)-Step function (Hard limiter)

-Piecewise linear

)(jvϕ

-Sigmoid (logistic)

-10 -8 -6 -4 -2 2 4 6 8 10

jv

)(jvϕ
1

Increasing a

0 with)(v
1

1
j >= −

+
a

e javϕ

ijijv yw
i
∑=

26HA-ANN, CE Dept, IUST

Other functions

27HA-ANN, CE Dept, IUST

